Protecting Salivary Gland Function During Radiotherapy

A/Prof Martin Borg
Adelaide Radiotherapy Centre
Tri-Society Head & Neck Oncology Meeting, Darwin 2014
Protecting Salivary Gland Function During Radiotherapy

- **Saliva**
 - Involved in
 1. mastication
 2. digestion
 3. swallowing
 4. speech
 - Function
 1. Lubrication of oral tissues
 2. Protection of oral tissues from bacterial infection
 3. Inhibition of enamel decalcification
 4. Provision of an excretory route for blood-bone urea, uric acid, ammonia + thiocyanate
Protecting Salivary Gland Function During Radiotherapy

- **Saliva**
- **Production**
 1. **Parotid Glands**
 - 60-65% of TSV; 20% at rest
 2. **Submandibular Glands**
 - 20-30% of TSV; 65% at rest
 3. **Sublingual/Minor SG**
 - 15% of TSV
- **Contributions vary across OC**
Protecting Salivary Gland Function During Radiotherapy

Radiotherapy Effects on SG
1. Reduced flow
2. Reduced pH
3. Reduced constituents
4. Increased viscosity
5. Xerostomia
Protecting Salivary Gland Function During Radiotherapy

Xerostomia

Affects quantity + quality

- Dental caries and infections
- Alterations in speech and taste
- Difficulty with mastication/deglutition
- Inadequate nutrition
- Fissures and ulceration
- Osteoradionecrosis
- Oesophageal injury
- Sleep disruption
- Psychosocial/financial
Protecting Salivary Gland Function During Radiotherapy

- Xerostomia and Radiotherapy
 - Initial (1^{st} wk) effect on serous (?acinar) cells (PG)
 - Subsequent effect on acinar cells (SG)
 - Effect (p-53 dependent apoptosis) varies with
 1. Total RT dose
 2. Volume of SG irradiated
 - Threshold PG/SG 26 Gy (26-39 Gy; ? none)
 - TD50 40 Gy: PGF = SGF
Protecting Salivary Gland Function During Radiotherapy

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage</td>
<td>Surgery or RT, RT ± CT, RT ± CT ± Surgery</td>
</tr>
<tr>
<td>Locally advanced</td>
<td>Surgery + RT ± CT, CT ± RT Surgery, Palliation</td>
</tr>
<tr>
<td>Recurrent and/or metastatic</td>
<td>RT ± CT ± Surgery, CT ± RT Surgery</td>
</tr>
<tr>
<td>Side Effect</td>
<td>RT (2-D)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Xerostomia</td>
<td>>66%</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>35-68%</td>
</tr>
<tr>
<td>Sticky saliva</td>
<td>33%</td>
</tr>
<tr>
<td>Impaired taste</td>
<td>25-50%</td>
</tr>
<tr>
<td>Dental effects</td>
<td>33%</td>
</tr>
<tr>
<td>Pain</td>
<td>15-30%</td>
</tr>
<tr>
<td>Appearance</td>
<td>20-25%</td>
</tr>
</tbody>
</table>
Measures to Protect SGF
Protecting Salivary Gland Function During Radiotherapy

- Proper Patient + Treatment Selection
 1. MDT
 2. MDC (S, Rad/Med Onc, dentists, dieticians, nurses, SP, PE)
 3. Trials

- General
 1. Oral Care (prompt treatment of infections)
 2. Dental Care
 3. Nutrition

- Specific
 1. RT
 2. S (TORS + ↓ RT dose; transplant of SG)
 3. CT (Erbitux vs. Cisplatin: Bonner et al, NEJM 2006)
Protecting Salivary Gland Function During Radiotherapy

- RT
 1. Modern techniques + delivery (IMRT, ?protons)
 2. Ipsilateral neck RT (early T stage; HPV SCC)
 3. ↓ field sizes + doses (with limited S: TORS)
 4. Immobilisation (daily cone beams)
 5. Radioprotectors (Amifostine)
 6. Stimulation of salivary flow (Acupuncture, HBOT, Pilocarpine: RTOG 97-09)
Multileaf Collimator

Leaf Movement in IMRT
IMRT

- Nutting C (RMH, ASCO/JCO 2009)
- PRCT (IMRT)
- OP/HP 94 pts (ST 3/4)
- IL parotid 59 Gy vs 45 Gy
- CL parotid 60 Gy vs 27 Gy
- ↓ SE: dysphagia, xerostomia (40%), skin rtc (not mucositis)
- ↑ SE: fatigue (↑ weight loss + hair loss, but P> 0.05)
IMRT

70 Gy + Cisplatin: day 35

70 Gy + Cisplatin: day 34
NPC RMS

RT doses

(Healy, Borg, Paediatric NP RMS, JMIRO 2010)

<table>
<thead>
<tr>
<th>NO</th>
<th>TL</th>
<th>BS</th>
<th>OC</th>
<th>PG</th>
<th>VC</th>
<th>PT</th>
<th>R</th>
<th>M/IE</th>
<th>SC</th>
<th>M</th>
<th>TG</th>
<th>L</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>28</td>
<td>3</td>
<td>59</td>
<td>19</td>
<td>6</td>
<td>0/0</td>
<td>59/58</td>
<td>42</td>
<td>48</td>
<td>0</td>
<td>4/3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>45</td>
<td>47</td>
<td>55</td>
<td>38</td>
<td>47</td>
<td>27/35</td>
<td>55/54</td>
<td>46</td>
<td>43</td>
<td>43</td>
<td>1/4</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>48</td>
<td>6</td>
<td>42</td>
<td>4</td>
<td>20</td>
<td>42/41</td>
<td>54/53</td>
<td>45</td>
<td>53</td>
<td>4</td>
<td>7/7</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>38</td>
<td>45</td>
<td>47</td>
<td>0</td>
<td>45</td>
<td>46/45</td>
<td>54/54</td>
<td>44</td>
<td>49</td>
<td>49</td>
<td>8/10</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>41</td>
<td>2</td>
<td>44</td>
<td>0</td>
<td>35</td>
<td>0/0</td>
<td>44/45</td>
<td>41</td>
<td>43</td>
<td>0</td>
<td>0/0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IMRT (2)</td>
<td>30</td>
<td>35</td>
<td>27</td>
<td>17</td>
<td>1</td>
<td>20</td>
<td>37/38</td>
<td>13/14</td>
<td>21</td>
<td>24</td>
<td>0</td>
<td>9/10</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

TL: temporal lobe; BS: brainstem; OC: optic chiasm; PG: parotid gland; VC: vocal cords; Pituitary: PT; R: retina; M/IE: middle/inner ear; SC: spinal cord; M: mandible; TG: thyroid gland; L: lens; ON: optic nerve (mean of L+R)
Protecting Salivary Gland Function During Radiotherapy

- **IMRT**
- **Parotid Dose**
 1. 2-D : 70-80 Gy
 2. 3-D CRT: 50-60 Gy
 3. IMRT: 20-25 Gy
- **PG 26 Gy** (Eisbruch et al, WJS, 2003)
- **↓↓ RT doses to skin, VC, TG**
Flow rate of 2% citric acid-stimulated P/SM/SLG’s. Vissinik et al, IJROBP, 2010
Protecting Salivary Gland Function During Radiotherapy

- Sparing of Minor SG (SG/SL)
- Little et al (IJROBP, 2012)
- 78 pts, stage ¾ OP/NPC
- CT/RT (IMRT)
- Sparing parts of L+R PG, OC containing MSG + CL SG
- Objective + subjective
- OC < 40 Gy + CL SG < 50 Gy + time after RT ↓ xerostomia (P < 0.05)
- Standard practice for selected pts
Protecting Salivary Gland Function During Radiotherapy

- SGL Transfer Prior to RT (RTOG 0244)
- Naresh et al. IJROBP, 2012, 49 pts
- Ph II: SGL transfer to submental space
- No IMRT, Amifostine, or Pilocarpine; CT was allowed
- 2’ end-pt: ≤ 51% ≥ G2 acute xerostomia acceptable (1’: reproducibility of SGL transfer)
- Technique reproducible + 74% < G2 xerostomia
- Superior to Pilocarpine (Jha et al, Ph III RCT, Head and Neck 2009)

Literature: 81% ≤ G1; 19% ≥ G2 xerostomia (Jha et al, Seikaly et al, Pathak et al, Lui et al)
Protecting Salivary Gland Function During Radiotherapy

Summary

IMRT

↓ SE + ↑ outcomes (NP, OP): ↑ TG

1. G3/4 mucositis 61% vs. 90%
2. Chronic salivary dysfunction 22% vs. 38%
3. Xerostomia 25-40% vs. 75%

(Chao, IJROBP 2000; Mahadevan, ECCO12 2001, Verger, IJROBP 2009)

TROG/DOHA ANROTAT NPC Study (ARC)
Amifostine
Amifostine as a Radioprotector

- WR-2721, Ethyol (Schering-Plough)
- 40 years of clinical + lab experience
- Sulfhydryl compound (NH$_2$(CH$_2$)$_3$NHCH$_2$CH$_2$SPO$_3$H$_2$)
- Scavenger of oxygen free radicals
- Best radioprotector (Eric J Hall)
- DRF 2.0 for salivary glands
<table>
<thead>
<tr>
<th>Department</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Rad Oncology</td>
<td>A/Prof Martin Borg (Chairman)</td>
</tr>
<tr>
<td>Dental Unit</td>
<td>Dr Elizabeth Coates</td>
</tr>
<tr>
<td>Ear, Nose and Throat Unit</td>
<td>A/Prof Suren Krishnan</td>
</tr>
<tr>
<td>Department of Pathology</td>
<td>A/Professor David Wilson</td>
</tr>
<tr>
<td>Clinical Dietetics</td>
<td>Mr David Cleghorn</td>
</tr>
<tr>
<td>Data Manager</td>
<td>Mrs Sonya Stevens</td>
</tr>
<tr>
<td>Department of Med Oncology</td>
<td>Professor Ian Olver</td>
</tr>
<tr>
<td>Oral and Maxillofacial Surgery</td>
<td>Professor Alistair Goss</td>
</tr>
<tr>
<td>Department of Nuclear Medicine</td>
<td>Dr Barry Chatterton</td>
</tr>
<tr>
<td>Diagnostic Service Laboratory</td>
<td>Dr David Nielsen</td>
</tr>
<tr>
<td>Adelaide Cancer Centre</td>
<td>Dr Brian Stein</td>
</tr>
<tr>
<td>Statistician</td>
<td>Dr Alvin Milner (PMCI)</td>
</tr>
</tbody>
</table>
Eligible patients
Definitive or adjuvant (postoperative) conventional RT for untreated SCC H&N
≥ 75% of each parotid gland included in planned treatment fields to ≥ 40 Gy (2-D technique)
WHO 0 - 2 and life expectancy ≥ 12 months
No distant metastasis
No primary parotid gland lesion or T1-2 N0 cancer of true VC
No concurrent chemotherapy likely to affect salivary glands

Stratify + Randomise
Treating staff and patients are blind to the randomised treatment

Amifostine (200 mg/m² IV) or placebo (normal saline)
Study drug (amifostine or placebo) as 3 minute IV infusion
No more than 30 minutes prior to each radiotherapy fraction
Radiation therapy 1.8 - 2.0 Gy/d for 30 - 35 fractions, 5 d/wk
Concurrent chemotherapy, if prescribed
<table>
<thead>
<tr>
<th>Late RT Toxicity (≥ G 2)</th>
<th>Amifostine (16)</th>
<th>Placebo (17)</th>
<th>p-value (HR/CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (mths)</td>
<td>Rate (%)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Salivary Gland</td>
<td>6</td>
<td>51.9</td>
<td>28-75</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>65.6</td>
<td>40-84</td>
</tr>
<tr>
<td>Subcut. Tissues</td>
<td>24</td>
<td>27.7</td>
<td>11-55</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>38.0</td>
<td>16-66</td>
</tr>
<tr>
<td>Mucositis</td>
<td>24</td>
<td>54.3</td>
<td>30-77</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>63.4</td>
<td>36-84</td>
</tr>
</tbody>
</table>
Estimated % age with grade 2+ late salivary gland toxicity

<table>
<thead>
<tr>
<th>Months following commencement of radiotherapy</th>
<th>Placebo</th>
<th>Amifostine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number at risk

- Placebo: 17, 10, 3, 2, 1, 1, 0, 0, 0
- Amifostine: 16, 8, 5, 4, 4, 3, 1, 1, 0
<table>
<thead>
<tr>
<th>Phase III Trials</th>
<th>Borg et al (RT + CT)</th>
<th>Brizel et al (RT)</th>
<th>Antonadou et al (RT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>41</td>
<td>303</td>
<td>50</td>
</tr>
<tr>
<td>Amifostine</td>
<td>200mg/m² IV</td>
<td>200mg/m² IV</td>
<td>300mg/m² IV</td>
</tr>
<tr>
<td>Acute ≥ G 2 Xerostomia*</td>
<td>80% vs 76%</td>
<td>51% vs 78%</td>
<td>27% vs 74%</td>
</tr>
<tr>
<td>Late ≥ G 2 Xerostomia*</td>
<td>66% vs 82%</td>
<td>20% vs 36%</td>
<td>5% vs 30%</td>
</tr>
<tr>
<td>Mucositis*</td>
<td>63% vs 78%</td>
<td>39% vs 35%</td>
<td>9% vs 100%</td>
</tr>
</tbody>
</table>

* A vs RT alone +/- P
AMIFOSTINE

Summary

- ↑ acute toxicities
 - (skin reactions [Amifostine rash], mucositis, vomiting and fatigue)
- ↓ late toxicities
 - (salivary gland, subcutaneous tissue, mucositis)
- No significant difference in FFS or OS @ 4 yrs
 - (6% + 10% differences, respectively)
- IV delivery on a daily basis (equivalent subcut)
Estimated percentage surviving without failure

Number at risk

Placebo 21 14 14 7 3 1 0
Amifostine 20 12 11 6 3 0 0
Acupuncture
Protecting Salivary Gland Function During Radiotherapy

Acupuncture

- Simple and safe
- Placebo effect?
- ↑ evidence in peer review literature
- Utilised (classical needle technique) at ARC last 4-5 yrs: trained physiotherapists (x2)
- 2 courses
- Concurrent or ≥ 3-6/12, or both
- Ongoing RTOG trial
- Duration of benefit ≥ 3 years with 2 courses
- No evidence of deleterious effects but care/exclude if heart ds (valves, etc.), bleeding disorders, infection, needle phobias
Protecting Salivary Gland Function During Radiotherapy

⚠️ Acupuncture

Mechanisms of Action

Unclear - probably biological (↑ fMRI activity; Deng et al 2008, Fang et al 2004)

1. Altered cerebral activity - alter biochemistry - neurotransmitter + neurohormonal release - affect sensation, involuntary body functions (autonomic system): change in blood flow, body temperature, blood pressure

2. Autonomic stimulation of SG directly or through ↑ blood supply

- Differing acu-points

- Not yet mainstream (CAM)
Protecting Salivary Gland Function During Radiotherapy

- Adelaide Radiotherapy Centre
 - 2 treatments (≥ 6/12 after RT)
 - Physiotherapist (Sean Bushby) trained in Dry Needling + Western Acupuncture (part of APA Acupuncture course)
 - Limited (phone) review (8.8.14)
 - 18 pts (18/30)
 - 17.2.11- 5.1.14
 - 14 +ve subjective responses after 2^{nd} treatment
 - 4 maintained responses at mean 15/12 FU (5-48/12; only 7 respondents)
Protecting Salivary Gland Function During Radiotherapy

Acupuncture Protocol (Dr Richard Niemtzow, USA)

- 2 treatments, within 24 hrs. of each other
- Points
 1. Salivary gland 2(SG 2) - Ear
 2. Large Intestine 1 (LI 1) - Index finger
 3. Modified Point Zero - Ear
 4. Shen Men - Ear
 5. 1 inch proximal to LI 1 - Index Finger (utilised if saliva production is low)
- Order

 R SG 1, R LI 1, L SG 2, LI 2, L modified pt zero, L shen men then corresponding pts on RHS
Protecting Salivary Gland Function During Radiotherapy

- Acupuncture
- Menq et al, Cancer 2012
- NPC, RCT, 40 vs. 46 pts, subjective/objective measures, concurrent + adjuvant, RR 0.63 vs. 0.38
Protecting Salivary Gland Function During Radiotherapy

- **Acupuncture**
- Single institutional phase II trial, McMaster University (Canada)
- Non-invasive acupuncture-like transcutaneous nerve stimulation (ALTENS) on selected sets of acupuncture points based on traditional Chinese medicine principles
- ↑ whole salivary production + ↓ RT-induced xerostomia symptoms > 6-12/12
- ↑ improvement in tongue dryness, speech, swallowing, overall oral, consistency of saliva + oral mucous, *and taste*
- Effective in managing RT-induced xerostomia symptoms + overcomes
 1. pt reluctance to needle insertions
 2. the requirement of trained expertise for treatment delivery
- Wong RK et al, IJRBP 2003;57(2):472-480
Protecting Salivary Gland Function During Radiotherapy

Acupuncture

- Wong et al. RTOG 0537. Phase 2/3. Multi-institutional. ALTENS vs. Pilocarpine. 3-24/12 post RT. 47 pts. 24 sessions. 94% compliance rate. 86% +ve treatment (QOL scores). 10% GI SE, 2% pain. Phase 3 RTOG study ongoing
Protecting Salivary Gland Function During Radiotherapy

- **Acupuncture**
 - Simcock et al, Annals of Oncology 2013
 - >18/12 (?time frame for ‘spontaneous recovery) after RT, 145 pts
 - Comparative study of Ac vs. standard oral care (objective + subjective)
 - Puncture sites: both ears, index fingers, nasolabial grooves
 - Needles retained for 20 mins and rotated after 10 mins
 - No electric devises allowed
 - X8 weekly sessions
 - Controlled for social + emotional QoL, priming
 - ↓ in severity of dry mouth + sticky saliva, and need to drink water to swallow food + quench thirst at night (none were worse)
Protecting Salivary Gland Function During Radiotherapy

Acupuncture

- Overview

- Only 2 trials ‘acceptable’. Excluded the rest
- Low quality evidence that acupuncture results in a small ↑ in saliva production in patients with dry mouth following RT
- Insufficient participants + 'placebo' acupuncture
- Insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms
- Dry mouth symptoms may be problematic even when saliva production is increased, yet only two of the trials reported dry mouth symptoms
- Reported adverse effects of acupuncture are mild + of short duration
- No reported adverse effects from electrostimulation (ALTENS)
HYPERBARIC OXYGEN THERAPY
Protecting Salivary Gland Function During Radiotherapy

► HBOT
 ► Transient effects
 1. ↑ Oxygen delivery
 2. ↓ Oedema
 3. Phagocytosis
 4. ↑ Mobilisation of stem cells from BM (NT recovery)

► Late effects
 1. Neovascularisation
 2. Osteoneogenesis
 3. Stimulation of collagen formation by fibroblasts (↑ fibrosis)
 4. Does NOT promote cancer growth
Protecting Salivary Gland Function During Radiotherapy

- HBOT
- Complex treatment
- 5-6 weeks
- Mon-Sat, 90 mins each dive
- Expensive
- SE: lung, ears, retina (restrict potential pts)
- Limited availability
- Difficult to accrue in trials + blind patients
- RAH trial, 1998 (blinded, multicentric)
Protecting Salivary Gland Function During Radiotherapy

- HBOT
 - Teguh et al. IJROBP, 2009 (Early HBOT, PIII RCT)
 - OP/NP (IMRT +/- BT/CBK boost; +/- CT)
 - +/- HBOT 30 sessions within 2 days after* RT
 - Slow accrual + poor funding
 - 19 pts only received HBOT
 - Sticky mouth + dry mouth: P < 0.05 (2/52 after RT, and ≥ 13/52; not acute SE*) (EORTC H&N35)
 - Also pain (VAS score) (≈ 0%), dysphagia
 - ? Placebo effect
Protecting Salivary Gland Function During Radiotherapy

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Outcomes</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amifostine</td>
<td>Phase III trials; concern re tumour protection (restrict to PORT?), few patients, few trials with placebo</td>
<td>II</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>Cannot be recommended: varying results, transient effects, 1 RCPT showed benefit for mean PG doses > 40 Gy*</td>
<td>II</td>
</tr>
<tr>
<td>IMRT</td>
<td>At least 3 RPCT (OP/NP) support its use</td>
<td>II</td>
</tr>
<tr>
<td>Acupuncture</td>
<td>Limited data but available</td>
<td>II</td>
</tr>
<tr>
<td>HBOT</td>
<td>Limited data</td>
<td>?II</td>
</tr>
</tbody>
</table>

Adapted from Vissinik et al, IJROBP 2010
Burlage et al, IJROBP 2008
Protecting Salivary Gland Function During Radiotherapy

Conclusions

- HN SCC is lethal and disfiguring, thus justifying aggressive + toxic treatments aiming for LC + cure
- Standard therapies (S/ND, CT, RT) combine to potentiate SG dysfunction
- The advent of HPV+ SCC affecting the OP has seen a surge in younger patients with improved prognosis
- SG dysfunction is devastating to patients affecting QOL in many ways
- Improvements in S, RT + CT, patient selection + MDC have ↓ deleterious effects on SGF: more pts are able to lead a normal life
- Prevention is better than cure but plenty of room for improvement
- Current approaches should be used in combination and not in isolation
- Newer approaches: IGF 1, botulinum toxin, tempol, GT, SC therapies